N ov 2 00 3 Transformation of a generalized Harry Dym equation into the Hirota – Satsuma system

نویسنده

  • S. Yu. Sakovich
چکیده

The new generalized Harry Dym equation, recently introduced by Z. Popowicz in Phys. Lett. A 317, 260–264 (2003), is transformed into the Hirota–Satsuma system of coupled KdV equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ct 2 00 3 Transformation of a generalized Harry Dym equation into the Hirota – Satsuma system

The new generalized Harry Dym equation of Z. Popowicz is transformed into the Hirota–Satsuma system of coupled KdV equations.

متن کامل

Transformation of a generalized Harry Dym equation into the Hirota–Satsuma system

The new generalized Harry Dym equation of Z. Popowicz is transformed into the Hirota–Satsuma system of coupled KdV equations.

متن کامل

O ct 2 00 3 On two recent generalizations of the Harry Dym equation

Two generalized Harry Dym equations, recently found by Brunelli, Das and Popowicz in the bosonic limit of new supersymmetric extensions of the Harry Dym hierarchy, are transformed into previously known integrable systems: one—into a pair of decoupled KdV equations , the other one—into a pair of coupled mKdV equations from a bi-Hamiltonian hierarchy of Kupershmidt.

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Approximate Analytic Solutions of Time-Fractional Hirota-Satsuma Coupled KdV Equation and Coupled MKdV Equation

and Applied Analysis 3 Theorem 5. If u(x, t) = f(x)g(t), function f(x) = xh(x), where λ > −1 and h(x) has the generalized Taylor series expansion h(x) = ∑∞ n=0 a n (x − x 0 ) αn, (i) β < λ + 1 and α arbitrary, or (ii) β ≥ λ+1, α arbitrary, and a n = 0 for n = 0, 1, . . . , m− 1, wherem − 1 < β ≤ m, then the generalized differential transform (8) becomes U α,β (k, h) = 1 Γ (αk + 1) Γ (βh + 1) [D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003